
PROJECT INDUZIONE

TEAM ALWAYS BLOCK
Long Beach, CA

Oxilette Studio

TABLE OF

CONTENTS
PROJECT SUMMARY
PREVIOUS WORK
AVAILABLE TECHNOLOGY
PROJECT DESCRIPTION
PROJECT SPECIFICATIONS
TASK LISTING
POTENTIAL CUSTOMERS
COMPONENTS
ROLES AND RESPONSIBILITIES
FUNCTIONAL REQUIREMENTS
SOFTWARE PROGRAM FLOW
HARDWARE CONFIGURATION
SCHEDULE - GANTT CHART
SOFTWARE - TASK DESCRIPTIONS
HARDWARE - TASK DESCRIPTIONS
SOFTWARE DESIGN DESCRIPTION
CONCLUSION
APPENDIX: SOFTWARE LISTINGS
APPENDIX: SCHEMATICS
 			
				

Oxilette Studio

Oxilette Studio

TEAM ALWAYS BLOCK

A Letter from the Team:

With the class now over, we hope to continue to make Project Induzione something real.

We would like to thank Bob Ward and CECS 490B for bringing us all together and helping us form
this idea.

We have been excited to work on this project and give it the amount of attention to detail and
excellence it needs for it to take wings.

Love,

TEAM ALWAYS BLOCK
hello@teamalwaysblock.com

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

PROJECT SUMMARY
An overview of our project.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

// SUMMARY

Project Induzione is simple:

01. Plug our peripheral into your car’s OBD-II port (every car since 1996 has one).

02. Drive.

03. Connect to our smartphone application and have fun!

ESSENTIALLY :

Our product consists of (1) a “plug-and-forget” component that you plug into your car that logs
information about your car (including error codes and diagnostics) and (2) a smartphone application
where you can access this information.

We seek to create the missing bridge of interactivity between you and your car.

08

Oxilette Studio Oxilette Studio

Our team ultimately shares a broad vision based upon expanding your use
of your car’s data beyond viewing data-logging / diagnostic information.

// WE IMAGINE:

01. Having a social hub where you can compare your stats and compete with your friends based 	
 upon those stats

02. ‘Leveling-up’ based upon your driving habits and having the ability to both add virtual 		
 upgrades to the car you drive and race your friends virtually based upon those stats

03. Compete in weekly challenges with other users. (i.e., drive 200 miles this week or check all of 	
 the vitals for your car within the application).

This document serves as an introduction to Project Induzione, the technology behind it, and the
features that make it a compelling product.

// SUMMARY

Oxilette Studio

PREVIOUS WORK
Work already completed towards our project before our class’ endeavor.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

NEW BEGINNINGS
Our project was defined by us as a team, and there were was no previous work done associated
with our project. A fresh start.

// PRE VIOUS WORK - OUR STORY

20

Oxilette Studio Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

AVAILABLE TECHNOLOGY
Existing solutions similar in scope and functionality to our project.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

TORQUE									 ANDROID

WAZE										 ANDROID/IOS

Product Description:

Torque is an application that allows users to view information about their
car via an OBD-II peripheral that connects to the vehicle and links to the
user’s phone via BlueTooth. In Torque, you are presented car information
such as MPG, coolant values, and are alerted of fault codes.

Product Description:

Waze is a traffic and navigation application that is community-based.
Essentially, users collaborate to provide traffic information on highways
across the country. As you drive more, you collect pellets using the phone’s
GPS that increase your running score within the application. Users are able
to provide alerts to other users based upon current traffic conditions.

// AVAILABLE TECHNOLOGY

There are several products existing today that are similar to our product. An
overview of these products is listed in the table below.

\\\WAZE										 ANDROID/IOSMAVIA									 IOS

Product Description:

Mavia is a car-connection tool that uses the OBD-II port to provide a
driver information about their vehicle. It provides deep analytics in a user-
friendly manner, and uses social aspects to enhance the driver’s connection
to their surroundings.

Oxilette Studio

// HOW IT IS SIMILAR

Torque uses a BlueTooth peripheral
to connect the user’s car (via OBD-
II) to their phone. This connection
is the same kind we will be using
for our product. Also, Torque
displays information about your
with gauges and skeuomorphisms
that make the app look like the
kind of presentation you would see
on your dashboard.

// HOW IT DIFFERS

This application gathers all of the
necessary information about your
car, but does not present it in a way
that is by nature social or gamified.
You do not get rewarded from
the values read on your car, and
although you can post information
to Facebook or Twitter, you are not
connected to your friends who are
also using the app.

// AVAILABLE TECHNOLOGY

TORQUE

An application designed to allow users to view information about their car
via an OBD-II peripheral that connects to the vehicle and links to the user’s
phone via BlueTooth.

Oxilette Studio

// HOW IT IS SIMILAR

Waze is a traffic and navigation
application that is community-
based. Essentially, users collaborate
to provide traffic information
on highways across the country.
As you drive more, you collect
pellets using the phone’s GPS that
increase your running score within
the application. Users are able to
provide alerts to other users based
upon current traffic conditions.

// HOW IT DIFFERS

Waze is focused on traffic and
it’s user-base mainly uses the
application for traffic information.
Also, Waze does not utilize the car’s
OBD-II port. While our app focuses
on connecting the user with their
car in a unique way and letting
them ‘level-up’ and feel connected
to their car, Waze is about giving
users useful traffic information for
their daily drive.

// AVAILABLE TECHNOLOGY

WAZE

A traffic and navigation application where users collaborate to provide
traffic information on highways across the country.

Oxilette Studio

// HOW IT IS SIMILAR

Mavia is our biggest competitor,
and is the product that is most
similar to what we are creating.
It provides analytics to users in
a friendly format with a well-
designed iOS UI/UX. It encourages
users to be social by connecting
to outside social networks such as
Facebook, Twiter, and Foursquare.

// HOW IT DIFFERS

Mavia does not present a gamified
experience to users. Also, Mavia
does not connect users socially
directly through the app: it
instead directs users to post on
an outside network. Unlike our
application, Mavia focuses on
analytics, geofencing, locating,
and reminding, but does not have
any of the gamified aspects that
our product does. It also does not
provide analytics as deep as we
intend to (such as average/real-
time RPM, tire pressure, etc.)

// AVAILABLE TECHNOLOGY

MAVIA

A car-connection tool that uses the OBD-II port to provide a driver
information about their vehicle. It provides deep analytics in a user friendly
manner, and uses social aspects to enhance the driver’s connection to their
surroundings.

Oxilette Studio

PROJECT DESCRIPTION
A full description of our project.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

// APPLICATION DETAILS

The Android application has a
tabular interface displaying:

- Home (shows info on your car /
weekly challenges)

- Social Hub (car club and
competitive, connect with friends
and family)

- Live data-logging / synced data
displaying graphical gauges
(analog / digital)

- Diagnostics (diagnostic trouble
codes, reminders for oil changes,
tire pressure)

// THE APPLICATION

From the Android application our team developed you can see your car’s
logged data. The application has a tabular interface displaying data-logging
and car information.

Oxilette Studio

// LOGGING METRICS

The peripheral will be able to logs
the following metrics:

- Fuel consumption
- Fuel used or remaining
- Fuel wasted while idling
- Distance
- Location
- Engine RPM
- Vehicle speed
- Engine load
- Air intake temperature
- Throttle position
- Battery voltage
- Error codes

// THE PERIPHERAL

The hardware peripheral that plugs into the car houses a custom, team-
designed printed circuit board (PCB). The idea behind this peripheral is that
it will be plugged into the OBD-II port of car and left alone to gather data.

Oxilette Studio

PROJECT SPECIFICATIONS
A list of specifications our project was designed to meet.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

PROJECT INDUZIONE PERIPHERAL					

MOBILE APPLICATION					

- Product Size (WxL): 1.8” x 3” compact design **

- Power Source: Requires 12V - 16V from OBD-II port **

- Built in GPS

- Built in BlueTooth **

- Android application required to communicate with the peripheral **

- Free Android application available on Google Play marketplace **

- Sync data stored in the peripheral to the application via BlueTooth **

- Tabular view showing interactive sections of application

	 - Home (shows info on your car / weekly challenges) **
	 - Social Hub (car club and competitive, connect with friends and 		
 	 family 	
	 - Live data-logging / synced data displayed (graphical gauges) **
	 - Diagnostics (show diagnostic trouble codes, reminders for oil 		
	 changes, check tire pressure)

// SPECIFICATIONS

Specifications for this project were chosen to provide the best user
experience possible. We found it crucial to focus on designing a product
that we ourselves would want to use, and our product specifications reflect
that.

PRODUCT SPECIFICATIONS
Since our product is divided into two pieces (peripheral and application), the specifications we have
created are divided into two parts. The specifications of our product are described below. Major pro-
ject requirements are designated with two stars (**).

Oxilette Studio

PROJECT INDUZIONE PERIPHERAL					

MOBILE APPLICATION					

- Power Source: Requires 12V - 16V from OBD-II port

- Built in GPS

- Built in BlueTooth

- Android application required to communicate with the peripheral

- Sync data stored in the peripheral to the application via BlueTooth

- Tabular view showing interactive sections of application

	 - Home (shows info on your car / weekly challenges)
	 - Social Hub (car club and competitive, connect with friends and 		
 	 family 	
	 - Live data-logging / synced data displayed
	 - Diagnostics (show diagnostic trouble codes, reminders for oil 		
	 changes, check tire pressure)

// SPECIFICATIONS

DID WE MEET OUR SPECIFICATIONS?
Project Induzione is an ambitious project. Our group has worked diligently in meeting each specifica-
tion we assigned for ourselves, however, we did have some issues that we’re the result of us being a
small-shop with limited time. The mobile application we were able to meet all of our specifications.
We had some trouble with the PCB, however, detailed in the section below.

PCB
We constructed two PCBs, however, we were unable to program either of them! We were unable to
resolve this issue. We do know that all of the peripherals (GPS, BlueTooth) on our board function cor-
rectly. The specifications we met as a team are shown below:

Oxilette Studio

TASK LISTING
Tasks necessary for the project.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

Hardware and software tasks required for our project, when broken down, can be seen as the fol-
lowing:

01. Purchase all required modules / hardware components
02. GPS data-logging
03. GPS data parsing and storing to SD card
04. OBD-II data logging
05. OBD-II data parsing and storing to SD card
06. BlueTooth UART communication
07. Purchase surface mount version of the modules / hardware components
08. Create board and schematic using Eagle CADsoft
09. Create gerber file and begin prototyping
10. Solder board and test
11. Plastic case enclosure research
12. Order plastic case enclosure
13. Application phase: determine development environment
14. Application phase: wireframing/screens/UX-UI flow
15. Application phase: begin prototyping application, divide application into segments
16. Application phase: bring and store data locally into an Android phone via BlueTooth
17. Application phase: server-side implementation
18. Complete application

// TASK L ISTING

Oxilette Studio

TRELLO TASK MANAGEMENT
Our team used a task management system called Trello. Trello allows teams to create boards with
tasks and assign them to individual members or the group as a whole. It greatly helps in helping
the team stay on schedule, as each team member can see the progress of another. A screenshot of
Trello is provided below.

// TASK L ISTING

Oxilette Studio

POTENTIAL CUSTOMERS
A brief overview of the people our project would appeal to.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

// POTENTIAL CUSTOMERS

Our product can be a little confusing - we understand. The following
sections contain use-case scenarios from several Project Induzione users,
who each use Project Induzione for different purposes.

MEET JODY

Jody buys Project Induzione for her new Fiat 500c Convertible.

Jody isn’t all that concerned with the game aspects that Project Induzione provides, but she is
interested in knowing the metrics of her car. Since she has a new car, she wants to make sure
that everything is constantly A-Ok and looking normal before she would ever get a check engine
light. If she ever does get an error code, she is comfortable in the fact that the Project Induzione
component will diagnost the error code her car is throwing and record it so that is better able to
tell the dealership what the problem is.

Jody has logs of her coolant temperature, fuel gauges, tire pressure, and other useful metrics in the
palm of her hands at all times. She’s an avid Project Induzione user for the ease of monitoring it
presents her.

Oxilette Studio Oxilette Studio

// POTENTIAL CUSTOMERS

MEET PHILLIP

Phillip commutes from Los Angeles to Corona daily. That’s a lot of driving!

Phillip buys the Project Induzione physical peripheral, plugs it into his OBD-II port in his car, and
downloads the Project induzione smartphone application.

Phillip is now connected to the nation-wide community of Project Induzione users. Project
Induzione recognizes the car he’s driving (a 2010 Nissan Altima) and assigns it a base performance
index (PI) of 56.

He goes to race another driver virtually (who drives a 2003 Honda Acoord), and loses badly! He
needs to improve his stats.

Phillip gains 400 experience points every weekday for his round-trip commute of 80 miles. Also for
this week, one of the Project Induzione weekly achievements is to get 35 MPG for the week. Phillip
gets this achievement and is awarded an extra 500 experience points. Sweet!

Phillip quickly levels up his car, buys virtual upgrades to his car with the virtual points he’s earned
(he chooses to get a new transmission) to improve his PI, and once again challenges the person
who had the Honda Accord who burned him earlier.

He wins! Phillip is engaged and now wants to drive more, hit landmarks, get more achievements,
and win more races, all while having valuable information about his car readily available! W00T!

44

Oxilette Studio

// POTENTIAL CUSTOMERS

MEET JESSIE

He is your automotive enthusiast.

He’s the guy that checks his oil and tire pressure every week and does not put anything less than 91
octane in his 2000 BMW 325i. He knows a little about engine management and is a good wrench.
He can work his way around a car and diagnose what’s wrong with his and his friend’s vehicles.

Jessie buys the Project Induzione peripheral and installed the Android application to make it easier
for on him to troubleshooe the many problems he is now encountering with his high mileage car.

He opens the live data-logging feature and not only finds that one of his cylinders is having a
misfire and triggering a check engine light, he also discovers that his oil temperature is higher than
usual. He replaces his spark plugs, cleans his mass flow sensor, and finds an oil leak. These small
fixes help him keep his car on the road, and not broken down on the side of the highway.

Oxilette Studio Oxilette Studio

// POTENTIAL CUSTOMERS

MEET RONALD

Ronald just bought a used 2001 Honda Civic for his son. a new driver.

Ronald buys the Project Induzione peripheral to keep track of his son’s driving habits. He enables
Project Induzione’s blackbox logging feature to see if his son is ever speeding or driving recklessly.
He also keeps track of his son’s car for him, and takes care of any maintenance that the car needs
when he notices something is wrong with the car.

Ronald handles the car vitals, while his son uses Project Induzione for the gaming aspect of it, lev-
eling up his car as he drives and challenging other users.

46

Oxilette Studio

COMPONENTS
The nuts and bolts of our project.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

Many drivers today are left at the mercy of car dealerships and/or
questionable auto mechanics. Most, if not all people have no idea what
exactly is going on under the hood of their car. For example, if a check
engine light goes on, the driver typically does not know the reason why.
With the features of our tool, users are able to diagnose any problems
that arise with their vehicle, allowing them to know exactly what needs to
be done when approaching a mechanic.

DESIGN CHART
In order to create this solution, our product implements many pieces of technology. There are vari-
ous modules and peripherals that are required for successful completion of our project. A top-level
block overview of the prototype of our project is provided below.

Note: The diagram below is strictly for prototyping purposes. All components of our project are
finalized on a PCB designed by our team.

// COMPONENTS

18

Oxilette Studio Oxilette Studio

LIST OF COMPONENTS
As seen in the previous diagram, the components of Project Induzione consist of the following:

01. Car with OBD-II Port
02. OBD-II to Serial Interface
03. LPC2148
04. SD card
05. GPS Module
06. RN-41 SM BlueTooth Module
07. Smartphone

Every car manufactures since 1996 has an OBD-II port, where various parameters about the car can
be read and analyzed. We will retrieve data from the car through the OBD-II port. An ARM LPC2148
will handle the data we retrieve from the car via a scheduling technique while the user is driving.
This data will be stored on an SD card and transmitted to a smartphone device using BlueTooth
technology. A GPS will be responsible for logging location data as well as mileage count. All of this
data will be displayed on an Android application.

In essence, the flow of technology in our device is as follows:

01. Microprocessor receives data from car and GPS
02. Microprocessor logs data to SD card
03. When user connects to device, microprocessor sends data over BlueTooth
04. User retrieves data on their phone

The Android application has features varying from data displaying, location displaying, virtual car
upgrading, virtual racing, acheivements, a social hub, and a car club. These features are integrated
from the data we retrieve from the OBD-II port and the GPS.

The next section provides a walkthrough of the above block diagram and the interconnecting com-
ponents of technology that our project is composed of.

// COMPONENTS

Oxilette Studio

WALKTHROUGH OF TECHNOLOGY
This section details a walkthrough of each functional block of technology that is included in our
project. The first major component of our project is our user’s car. Pictured below is a car -- a Mclar-
en MP4-12C (lovingly dubbed by our team as the Mclaren LPC2148).

 Aside from the 0-60 in 3.3 seconds the car user owns (or a more regular, pedestrian car than the
one shown above) and the user’s phone, only one component of Project Induzione is visible to the
user. All of the following components will be placed within a case housing a PCB with the finished
design. The user will only see an OBD-II connector to plug in and a block. Our goal is to be able
to fit the PCB in a palm-fitting case/connector. We will be creating our own custom PCB for this
design. For our final project we were unable to acheive the housing. Below is the PCB.

For protoyping purposes, the first component obfuscated to the user is an OBD-II to DB9 module
that acts as the interface to the vehicle. The module will transcribe the OBD-II protocol into a
workable UART form.

// COMPONENTS

20

Oxilette Studio Oxilette Studio

// COMPONENTS

WALKTHROUGH OF TECHNOLOGY CONTINUED

This UART module connects to an LPC2148 microprocessor via serial communication.

The LPC2148 interfaces with an MTK3339 GPS chip, which logs location data every ~2 minutes
when the device is powered.

Oxilette Studio

// COMPONENTS

22

WALKTHROUGH OF TECHNOLOGY CONTINUED
The logged data from both the GPS and OBD-II is stored into memory.

A BlueTooth module transfers this data wirelessly to a smartphone whenever the user chooses to
the sync to the application.

Oxilette Studio Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

ROLES AND RESPONSIBILITIES
Our team and who was responsible for which aspects of the project.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

// ROLES AND RESPONSIBIL IT IES

Our team collaborated through all parts of the project. Every member has
made a huge contribution to the project and has been a huge part of the
team.

Anthony Roncal (Partner)
The Swift Scout
Anthony did a lot of the Android application and handling Social
Hub aspects connected to our Parse DB backend. Dat app? Well,
that’s Anthony’s doing.

Garvin Ling (Partner)
Grandmaster at Arms
Garvin did most of the firmware and syncing logic for the
Android application. This guy did a lot of the technical stuff
associated with our project, and successfully tackled the
challenge of creating a working OBD-II interface using the
LPC2148 (what a boss!)

Oxilette Studio

Paul Camantigue (Partner)
The Prodigal Explorer
Paul is our resident hardware master. He created both of our PCBs
and is our master solderer. Making our PCB wasn’t easy: the amount
of components and the small pins of the LPC2148 make soldering a
challenge. Paul was able to do it with ease.

Bo Adepoju
The Madman of Zaun
Bo did a lot of the UI/UX of the application and contributed to the
firmware. He worked towards making sure that everything app-wise
was boo-yoo-tiful.

// ROLES AND RESPONSIBIL IT IES

Oxilette Studio

FUNCTIONAL REQUIREMENTS

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

The following are the functional requirements of our project.

POWER SOURCE FROM OBD-II

Our peripheral needs to be powered from the OBD-II port of the car and not require any other form
of power.

BUILT IN GPS

THE GPS is a necessary part of our finished PCB design.

BUILT IN BLUETOOTH

The BlueTooth is a necessary component of our finished PCB design.

APPLICATION: REQUIRED TO COMMUNICATE WITH PERIPHERAL

Our Android application needs to be able to successfully receive and send data to our PCB.

APPLICATION: TABULAR VIEW

Our application’s tabular view must contain the following:

	 - Home (shows info on your car / weekly challenges)
	 - Social Hub (car club and competitive, connect with friends and family 	
	 - Live data-logging / synced data displayed
	 - Diagnostics (show diagnostic trouble codes, reminders for oil changes, check tire pressure)

// FUNC TIONAL REQUIREMENTS

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

SOFTWARE PROGRAM FLOW
A brief overview of the people our project would appeal to.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

// SOFT WARE PROGRAM FLOW

The application software powers our mobile device and it’s phone-side
interactivity with our PCB.

APPLICATION SOFTWARE DESCRIPTION
The application software is implemented as an Android application on an Android device. From here
the user is able to communicate with the OBD-II interface via our embedded firmware. This is where
the diagnostic checking and “gameplay” takes place. The application uses the data acquired from the
OBD-II interface and applies it to the game. The user has the ability to acheive certain set goals for
the week in order to gain points and level up. For example, the user will be given a goal such as one
of the following:

01. Have a level coolant temperature for the entire week
02. Drive within a radius of a specified landmark or group of landmarks (i.e. drive past an In-N-Out) X
 amount of times in a week
03. Log onto the Project Induzione application X times in a week

The product then accumulates statistics over the lifespan of this goal and reward the user accordingly.

Our product has passive logging capabilities and records data onto the SD card interface on our PCB.
If the user chooses to do so, he/she can then use the application and “sync” up the SD card data to
their phone. This way, the user does not need to have the application running in order to achieve cer-
tain gameplay goals. The user is also able to read live data from the OBD-II interface by sending out
a byte to the BlueTooth module of the hardware board. The firmware then handles it and send it out
through the OBD-II interface. This allows the user to display data such as engine rpm, air/fuel mixture
ratio, and other parameters, in real time.

The flowchart shown below is a summarizzed version of our software flow in the Android application.
It is a simple, tabbed, and organized set of screens that is easy to navigate through.

Oxilette Studio Oxilette Studio

// SOFT WARE PROGRAM FLOW

APPLICATION SOFTWARE DESCRIPTION CONTINUED

When one chooses to view the live data logging screen of the application, they will go through either
one of two processes: live parameter displaying or background “blackbox logging”.

36

Oxilette Studio

// SOFT WARE PROGRAM FLOW
APPLICATION SOFTWARE DESCRIPTION CONTINUED

LIVE PARAMETER DISPLAY
The Project Induzione peripheral constantly requests data corresponding to the user’s choice through
the smartphone application. This data is shown in real time, shown as a gauge for that specific pa-
rameter.

BACKGROUND “BLACKBOX” LOGGING
If something is wrong with a user’s car, we want to give the user a choise to “log” and store the data
to an SD card. This allows the user to send their logs to an automotive mechanic who understands
engine management. This way, if the check engine light does not turn on, there can still be a way to
find what is wrong with a user’s vehicle. Our blackbox logging feature is also a useful tool to help the
user keep track of either their own driving habits or the driving habits of other people who use their
vehicle. For example, a parent might want to enable the blackbox logging mode to see whether or
not their child was speeding or driving recklessly. This way, our logging functionality can prove to be

Oxilette Studio Oxilette Studio

// SOFT WARE PROGRAM FLOW

BACKGROUND “BLACKBOX” LOGGING CONTINUED
useful to both the enthusiast and the everyday commuter.

Whenever the check engine light goes on, the user is able to read what is called a “Diagnostic Trou-
ble Code” from the ECU. These DTCs are universal identifiers for various problems that arise in an
automobile. If a user’s car triggers the check engine light, we can request the data via OBD-II and
retrieve a code back respective to their current error. Once our application detects an error code
in the vehicle’s ECU, the application will launch the phone’s browser and directly run a search for
causes and solutions pertaining to that specific error code.

38

Oxilette Studio

// SOFT WARE PROGRAM FLOW

APPLICATION SOFTWARE DESCRIPTION CONTINUED

LIVE PARAMETER DISPLAY
The Project Induzione peripheral constantly requests data corresponding to the user’s choice through
the smartphone application. This data is shown in real time.

BACKGROUND “BLACKBOX” LOGGING
If something is wrong with a user’s car, we want to give the user a choise to “log” and store the data
to an SD card. This allows the user to send their logs to an automotive mechanic who understands
engine management. This way, if the check engine light does not turn on, there can still be a way to
find what is wrong with a user’s vehicle. Our blackbox logging feature is also a useful tool to help the
user keep track of either their own driving habits or the driving habits of other people who use their
vehicle. For example, a parent might want to enable the blackbox logging mode to see whether or
not their child was speeding or driving recklessly. This way, our logging functionality can prove to be

Oxilette Studio Oxilette Studio

// SOFT WARE PROGRAM FLOW

FACEBOOK LOGIN CODE

Shown above is a code snippet demonstrating our Facebook login implementation. Our application
has a hook to Facebook that checks whether the user already has an existing session in the applica-
tion via Facebook, if they have not yet registered, or if they are logging in for the first time.

Oxilette Studio

UI COMPONENTS					

- LEDs on hardware peripheral to indicate connectivity status

- Slick mobile application with:

	 - Enhanced dashboard (for data displaying)
	 - Stat tracking / rewarding game interface

// SOFT WARE PROGRAM FLOW

The user interface / user experience (UI/UX) for our product is unique in
the fact that the user is receiving two parts: both hardware peripheral and
mobile application. The main user interface is provided via the application.

USER INTERFACE COMPONENTS
The main components of the UI for our product are listed below:

The user will not be observing any moving hardwar,e as all calculations and communication is done
in the PCB and wirelessly over BlueTooth. The user interacts with our product via the Android applica-
tion.

The final product features a slick and user friendly application interface. Each user will be asked to
create an account upon initial startup to associate their respective device. If a user already has an ac-
count, they will be greeted with a login screen asking for their username and password.

Upon successful login, it will display multiple tabs consisting of a home screen, “My Car”, social hub,
car club, and diagnostics. Each tab will contain information ranging from details about a user’s car,
driving habits, and friend information (including stats on a friend’s car).

24

Oxilette Studio Oxilette Studio

APPLICATION WIREFRAMES
Provided in this section are early mockups that our team had created for the application we are
developing.

Oxilette Studio

OUR APPLICATION
Provided below are some screenshots of our actual Android application!

Oxilette Studio Oxilette Studio

Oxilette Studio

HARDWARE CONFIGURATION
A technical description of our design and configuration solution including

flowcharts, block diagrams, schematics, and explanations of each.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

\\
OPERATING VOLTAGES					

OPERATING CURRENTS				

- LPC2148: 6.5 V to 3.3 V / 5 V DC (via linear regulators)

- Roving Networks BlueTooth Module: 3.3 V - 3.6 V DC

- Adafruit GPS chip: 5 V - 5.5 V

- LPC2148: 500 mA

- Roving Networks BlueTooth Module: 8-30 mA connected, 2mA idle

- AdaFruit GPS chip: 20 mA

- 15 dBm Transmitter

- 80 dBm Receive Sensitivity

- Operation Range: 100m Range

- Operation Frequency: 2402 MHz - 2480 MHz

				 Chart continued on next page.

// HARDWARE

Project Induzione’s hardware needed to be smart, succinct, and well
packaged. An ARM7 chip interfacing to BlueTooth and GPS chips is the core
of our design, components which allow for us to create a small yet capable
PCB.

HARDWARE METRICS
An ARM7 microprocessor is the core of our custom PCB design, interfacing to both BlueTooth and GPS
modules. An ELM/STN1110 chip is used to translate ASCII to OBD-II protocols, and a CAN transceiver
to transfer data over the OBD-II lines. We will be using a scheduling technique on our LPC2148 to
smartly choose priority between UART data lines.

Provided below are some important metrics of the hardware required for our product.

26

BLUETOOTH OPERATION SPECIFICATIONS				

Oxilette Studio Oxilette Studio

GPS OPERATION SPECIFICATIONS			

- UART Interface (SPP, HCI)
	 - SPP data rates: 240 Kbps (slave), 300 Kbps (Master)
	 - HCI data rates: 1.5 Mbps sustained, 3.0 Mbps burst in HCI mode.

- Low Power Mode: 30 mA connected, < 10 mA sniff mode

- 10 Hz Update Rate

- Output: NMEA 0183, 9600 baud default

- Antenna Size: 15mm x 15mm x 4mm

- Satellites: 22 tracking, 66 searching

- Position Accuracy: 1.8m

- Operating Voltage: 5 V DC

- Operating Current: 500 mA

- Case Material: Flame Retardant Polycarbonate

// HARDWARE

PACKAGED PRODUCT SPECIFICATIONS			

Oxilette Studio

// HARDWARE

OBD-II PINOUTS
The pinouts of the OBD-II car interface are provided below.

28

PIN DESCRIPTION				 OBD-II PIN 	 DB9 PIN	 			

J1850 BUS+.
Chassis Ground
Signal Ground
CAN High J-2284
ISO 9141-2 K Line
J1850 BUS-
CAN Low J-2284
ISO 9141-2 L Line
Battery Power

2
4
5
6
7

10

	 7
2
1
3
4

14
15
16

	 6
5
8
9

Oxilette Studio Oxilette Studio

// HARDWARE

DATA FLOW CHART
Provided below is a flow chart showing the data flow in between our several hardware components.

Oxilette Studio

// F IRMWARE

The firmware of our project drives our embedded system to complete tasks
effectively and efficiently.

FIRMWARE DESCRIPTION
The firmware portion of the code is written in C and embedded in our microprocessor. The respon-
sibility of the firmware is to manage the communication between the client device (Android Device)
and the host device (OBD-II Interface). The OBD-II interface has five different communication proto-
cols and varies from brand to brand. For example, most European and Asian import vehicles use ISo
9141 / KWP2000 circuitry while most GM cars and trucks use SAE J1850 VPW (Variable Pulse Width
Modulation). The protocol can be identified by observing which pins are connected on the OBD-II in-
terface. However, since our product will be used across a wide array of vehicle makes and models, our
firmware will dynamically select the protocol for the OBD-II interface that it is connected to.

Once the firmware establishes the communication protocol, it can then communicate with the OBD-II
interface via serial communication. The OBD-II serial peripheral serves as the communication medium
between the LPC2148 and the engine control unit of the vehicle. The GPS module actively collects
latitude/longitude data and continuously sends it out via the tx line, even if it has not found a fix yet.

Since the LPC2148 has two serial peripheral wired to one UART, it is up to the firmware to control
which peripheral talks to the board at any given moment in time. We are managing this by setting up
two transistors, wired from the transmit of both the OBD-II serial peripheral and the GPS. We will use
the on-chip GPIOs to switch between which peripheral data is to be received.

Below is a flowchart showing our main loop for our embedded firmware. It will consist of two cases,
depending on if a command is received. The command is received from the phone when the user
wants to log data parameters from their car. If a command is not received it will stay in an idle state
where no intensive activity is happening, i.e. low power mode.

PARAMETER IDs
To get the data from the OBD-II interface, the firmware sends out a byte called the Parameter ID
(PID) through the serial interface. Parameter IDs are OBD-II protocol communication codes that are
sent to the ECU in order to request/retrieve data from the vehicle. OBD-II diagnostics are standard in
vehicles manufactured since 1996. While most of the common parameter IDs are available in all cars,
some vary depending on sensors present in the vehicle.

30

Oxilette Studio Oxilette Studio

PARAMETER IDs
To get the data from the OBD-II interface, the firmware sends out a byte called the Parameter ID
(PID) through the serial interface. Parameter IDs are OBD-II protocol communication codes that are
sent to the ECU in order to request/retrieve data from the vehicle. OBD-II diagnostics are standard in
vehicles manufactured since 1996. While most of the common parameter IDs are available in all cars,
some vary depending on sensors present in the vehicle.

// F IRMWARE

Oxilette Studio

// F IRMWARE

PARAMETER IDs CONTINUED
Parameter IDs consist of two bytes. The first byte is the mode, ranging in value from 00-09. Below is a
table of the modes of operation when the OBD-II port is utilized.

32

OBD-II HEXADECIMAL RADIX			 MODE OF OPERATION	 			

01
02
03
04
05
06
07
08
09

Show current data
Show freeze frame data

Show stored Diagnostic Trouble Codes
Clear Diagnostic Trouble Codes

Test results, oxygen sensor monitoring
Component/System Monitoring (CAN only)

Show pending Diagnostic Trouble Codes
Control operation of on-board components

Request vehicle information

We primarily use mode 01 and mode 03 since these are the modes to retrieve live engine diagnostics
and statistics. The second byte is the actual ID command. For example, if the firmware sends out a
byte 0x0C (the PID for engine RPM), the OBD-II interface will respond with the vehicle of the current
engine RPM of the vehicle. The response from the ECU will be in the form of 4 bytes.

1st byte. Mode + 0x40 (ex. for this case it would be 0x41)
2nd byte. Echo Mode (ex. for this case it would be 0x0C)
3rd byte. Upper byte of data
4th byte. Lower byte of data

(For RPM, we take the hex value and divide it by 4 to get the actual RPM value.)

CONVERTING VALUES
When we get the response back (for example, 1A 3F), we will receive the bytes as ASCII values (0x31,
0x41, 0x33, 0x46). We however want the actual decimal values of each character. Therefore, we will
have a method in our firmware that converts the received ASCII values into their respective decimal
values.

We then have a method that calculates/converts that full hex value to its respective decimal value.
This value is then put through the appropriate conversions. However, before we send this data

Oxilette Studio Oxilette Studio

// F IRMWARE

CONVERTING VALUES CONTINUED
to the Android device, we must convert those integer values back to their ASCII forms. The integer
values will be split up into an integer array with each digit having its own offset. Each digit is then
converted back into its ASCII form by adding 0x30 to the number.

This data is sent out through the BlueTooth module to the Android device. This cycle will keep hap-
pening until the user chooses to stop reading. Therefore, the data on the phone will be updated
dynamically and the user will be able to continuously see what is going on in their car. We will be
utilizing a scheduler to prioritize tasks in the firmware.

Below is a table of the many PIDs that we will be logging/displaying, their PID codes, and their con-
version formulas.

Calculated engine load value
Engine coolant temperature
Fuel pressure
Intake manifold absolute pressure
Engine RPM
Vehicle speed
Timing advance
Intake air temperature
MAF air flow rate
Throttle Position
Fuel Rail Pressure
Fuel Level Input
Barometric pressure
Ambient air tempeature
Engine oil temperatue
Fuel injection timing
Driver’s demand engine
Actual engine - percent torque
Engine reference torque

04
05
0A
0B
0C
0E

	 %
Celsius

kPa
kPa
RPM

0F
10
11
22
23
2F
33
46
5C
5D
61
62
63

 km/h
 degrees

Celsius
Celsius

grams/sec
%

kPa
kPa
%

kPa
Celsius
Celsius
degrees
percent

DESCRIPTION 			 MODE PID UNITS FORMULA 	

A*100 / 255
A - 40
A*3
A

((A*256)+B)/4
A

A/2 - 64
A - 40

((A*256)+B)/100
100*A/255

A
A-40
A-40

(((A*256)+B)-26
A-125
A-125

A*256 + B
A

A*256 + B

01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

Oxilette Studio

// F IRMWARE

SCHEDULER LOGIC
Our scheduler utilizes the on-board general purpose input/output ports (GPIO) to control which pe-
ripheral gets the attention of the LPC2148’s UART. The firmware’s scheduler will not be interrupt nor
timer based. It will utilize counters based on whether or not we finished logging a specific amount
of OBD-II data from the car. When it has reached a preset number of data parameters it will turn one
GPIO “off” and another one “on” to drive our transistor circuit. This way, both peripherals are constantly
outputting data so there will be no delay besides the timing in the switching of the transistors.

The schematic below shows the circuit dicussed above. It utilizes only two transistors: one for OBD-II
data and the other for GPS data.

34

Oxilette StudioOxilette Studio

CONVERTING VALUES
When we get the response from the Car’s OBD-II, we receive bytes as ASCII values (i.e., 0x31, 0x41,
0x33, 0x46). We howeve want the actual decimal values of each char. Therefore, we have a function in
our firmware that converts the ASCII values into their respective decimal values.

We then have a function that calculates/converts that full hex value to its respective decimal value.
This value is then put through the appropriate conversions. The data is now ready to be transmit-
ted back out to display to the user. However, before we do this we must convert those integer values
back to its ASCII form. We split up the integer value into an integer array with each digit having its
own offset. Each digit is then converted back into its ASCII form by adding 0x30 to the number.

The GPS outputs constantly outputs data, even if it has not found a fix yet. This data looks like this:

// F IRMWARE

Oxilette Studio

// F IRMWARE

An example of us testing our firmware is provided below. Shown is our firmware logging vehicle RPM
through OBD-II connection.

34

Oxilette StudioOxilette Studio

// OUR HARDWARE
Pictured below!

Oxilette Studio

SCHEDULE - GANTT CHART

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

// GANT T CHAR T

Oxilette Studio

Oxilette Studio

SOFTWARE - TASK DESCRIPTIONS

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

Software tasks for our project were the following:

GPS DATA LOGGING

For the GPS, we had to retrieve the sequence and parse it for the desired latitude, longitude, and
timestamp. In order to do so, we had to set up a loop within our passive firmware logging to cap-
ture this data at any point and gather (parse) only the data that is needed.

GPS DATA PARSING AND STORING TO SD CARD

Storing the aforementioned GPS data to the SD card required placing the data needed in a buffer
and storing it at the end of our passive logging loop.

OBD-II DATA LOGGING

The meat of our project -- storing the OBD-II data to the SD card. This involved communicating
with the car and retrieving the necessary parameters, and storing it back to the SD card.

BLUETOOTH UART COMMUNICATION

This task involved sending the required data to the phone when a sync is requested, i.e. how a user
retrieves all of the parameters for our Android application.

APPLICATION PHASE: DETERMINING DEVELOPMENT ENVIRONMENT

This task involved sending the required data to the phone when a sync is requested, i.e. how a user
retrieves all of the parameters for our Android application.

APPLICATION PHASE: WIREFRAMING/SCREENS/UI-UX FLOW

This involved creating the detailed mockups of how we would like the application to look and feel.

APPLICATION PHASE: BRING AND STORE DATA LOCALLY INTO ANDROID PHONE

This was a huge step for us -- syncing data from our firmware and custom design to the application
for us to play with. This involved sending data via BlueTooth and retrieving it appside.

// SOFT WARE TASK DESCRIPTIONS

Oxilette Studio

APPLICATION PHASE: SERVER-SIDE IMPLEMENTATION

Our application relies on a lot of data. We used Parse as a server-side implementation of our An-
droid application.

APPLICATION PHASE: COMPLETED APPLICATION

The last step -- the completed application! This is where the software is wrapped up with a bow on
top, signifying our finished work of the project.

Oxilette Studio

HARDWARE - TASK DESCRIPTIONS

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

Hardware tasks for our project were the following:

FUNCTIONAL DESIGN PROTOTYPE (BLUEBOARD)

Putting everything together! Having our working project on the LPC2148 BlueBoard was a major
acheivement for our project.

PURCHASE SURFACE MOUNT VERSION OF THE HARDWARE COMPONENTS

This step involved buying the parts to be used for our custom PCB design.

CREATE BOARD AND SCHEMATIC USING EAGLE CADSOFT

Creating the board! Putting everything together for the PCB.

SOLDER BOARD AND TEST

Soldering every component ordered, and testing. We created two PCBs for this step.

// HARDWARE TASK DESCRIPTIONS

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

CONCLUSION
A summary of our project and the problems we have experienced.

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

// CONCLUSION

Looking forward.

PROBLEMS ENCOUNTERED AND CONCLUSION
As stated in the previous section, we had some minor setbacks when ordering the PCB because the
footprint we used in EAGLE for our DB9 Serial port was the wrong spec. We then corrected the sche-
matic and board and have reordered the PCB.

We also had setbacks in being able to program the LPC2148 on the PCB (!). Once again, these are is-
sues that could have been resolved with more time.

Developing a product that is threefold: (I) hardware based, (II) firmware based, and (III) software based
requires a lot of hard work, team coordination and cooperation.

By eliminating variables within the development of our project, our team has worked hard to make
sure our design is as straightforward as possible.

Our team has done a great job in creating something that we love, and something that can be built
upon further so that the world can also love it.

We look forward to continuing to build the product and the dream.

LOVE,
Team Always Block

Oxilette Studio Oxilette Studio38

(This page intentionally left blank.)

Oxilette Studio

APPENDIX - SOFTWARE LISTINGS

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

APPENDIX - SCHEMATICS

01

Oxilette Studio

(This page intentionally left blank.)

Oxilette Studio

LPC2148

Oxilette Studio

GPS/BlueTooth/SD

Oxilette Studio

FINAL PCB

Oxilette Studio

TEAM ALWAYS BLOCK

w w w . t e a m a l w a y s b l o c k . c o m

